1/7x^2-11=0

Simple and best practice solution for 1/7x^2-11=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x^2-11=0 equation:



1/7x^2-11=0
Domain of the equation: 7x^2!=0
x^2!=0/7
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-11*7x^2+1=0
Wy multiply elements
-77x^2+1=0
a = -77; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-77)·1
Δ = 308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{308}=\sqrt{4*77}=\sqrt{4}*\sqrt{77}=2\sqrt{77}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{77}}{2*-77}=\frac{0-2\sqrt{77}}{-154} =-\frac{2\sqrt{77}}{-154} =-\frac{\sqrt{77}}{-77} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{77}}{2*-77}=\frac{0+2\sqrt{77}}{-154} =\frac{2\sqrt{77}}{-154} =\frac{\sqrt{77}}{-77} $

See similar equations:

| X+(x/3)=48 | | 1=5x+20 | | 4=12/n | | 3x—7=8x+23 | | -0.65x+0.45=5.4 | | 15=19-b | | 3a(a+1)-a(3a-4)=28 | | 5(2-y)-y=2 | | 3(2x-7)+5=4(x+2) | | -3=3(x+3-5x | | 3h+6(h+1)=9h-6 | | 6-7x=6x-10x-3 | | 3(2x-7)+5=4(x+2 | | 4(p-14)=8 | | 7=4x^2-12x | | 1/4(5x+1)=4 | | 4(p-14)=18 | | 8=-6p-6p+7p | | (2+3x)(2-3x)=16x | | 6w+3w=-90 | | (3x-9)+6x=90 | | 5.5g+10=3.5g+20 | | 2x=7= | | 5.5g+10=3.5g+2= | | -0.66x+0.36x=7.2 | | x3−24=-18 | | |3x+9|=30 | | .15xX=49.45 | | x+0,75x=1043 | | 2n+4-(4n+6)=2n-7+n | | (3x+43)+(2x+37)=180 | | -3(b+-8)=18 |

Equations solver categories